Diffusion Leaky Zero Attracting Least Mean Square Algorithm and Its Performance Analysis
نویسندگان
چکیده
منابع مشابه
Constrained Least Mean Logarithmic Square Algorithm: Design and Performance Analysis
This paper introduces a novel constraint adaptive filtering algorithm based on a relative logarithmic cost function which is termed as Constrained Least Mean Logarithmic Square (CLMLS). The proposed CLMLS algorithm elegantly adjusts the cost function based on the amount of error thereby achieves better performance compared to the conventional Constrained LMS (CLMS) algorithm. With no assumption...
متن کاملZero Attracting PNLMS Algorithm and Its Convergence in Mean
The proportionate normalized least mean square (PNLMS) algorithm and its variants are by far the most popular adaptive filters that are used to identify sparse systems. The convergence speed of the PNLMS algorithm, though very high initially, however, slows down at a later stage, even becoming worse than sparsity agnostic adaptive filters like the NLMS. In this paper, we address this problem by...
متن کاملMean square convergence analysis for kernel least mean square algorithm
In this paper, we study the mean square convergence of the kernel least mean square (KLMS). The fundamental energy conservation relation has been established in feature space. Starting from the energy conservation relation, we carry out the mean square convergence analysis and obtain several important theoretical results, including an upper bound on step size that guarantees the mean square con...
متن کاملPerformance Analysis of $l_0$ Norm Constraint Least Mean Square Algorithm
As one of the recently proposed algorithms for sparse system identification, l0 norm constraint Least Mean Square (l0-LMS) algorithm modifies the cost function of the traditional method with a penalty of tap-weight sparsity. The performance of l0-LMS is quite attractive compared with its various precursors. However, there has been no detailed study of its performance. This paper presents compre...
متن کاملLeast Mean Square Algorithm
The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2871555